AI与Web3擦出火花:从数据、NFT到资源付费
作者/茉莉
编辑/文刀
随着AI大模型的普及,AI与Web3的融合领域已然成为加密资产市场的热门板块,两个技术在“数据”的应用层面爆发出可融潜力。
当红炸子鸡人工智能自然语言大模型的基础是“三算”,其中之一便是算据,理论上,为大模型提供的数据集越大,在有效训练之后的学习与预测能力就越强。而Web3的底层区块链技术本质上分布式数据库,按时序打包数据的链式结构形成了数据无法被篡改的特点。
二者或有互补优势。Web3区块链能够安全地存储数据,作为一种账本,它的“分布式存储和计算”属性,可以为AI的算据层面提供定价和真实性的保障;而AI能够提升区块链交易的效率,将复杂的数据处理程序自动化。
一个例子是链上交易的自动化,这可以应用在加密资产市场。由机器学习驱动的AI算法可以跟踪市场波动,分析大规模的数据,从中找到规律与趋势,并根据预定的标准执行交易。
AI还可以应用在区块链的安全性上,利用机器学习算法检查交易数据,寻找可疑趋势或异常,并不断从数据中学习以避免新的风险。
尽管当前AI与Web3都处于初级阶段,但前者被认为有可能为Web3乃至加密资产市场带来变革。Fortune Business Insights的一份报告显示,区块链的人工智能市场在2020年为2.205亿美元,到2027年可达到9.736亿美元,复合年增长率为23.6%。
盘点AI+Web3项目,不难发现,目前的8个早期龙头项目主要发挥了“AI提升生产力”的特性,已经将AI大模型及机器学习的能力应用到Web3的底层技术设施或具体应用中,包括:
- 将AI的多模态生成(AIGC)能力应用到了NFT生成中;
比如ChainGPT(CGPT),这个区块链的人工智能解决方案不仅能提供Web2世界常见的文本内容生成、AI聊天机器人功能外,还是一个NFT生成器;再比如Aspecta,它构建了一个人工智能生成的身份系统,通过Aspecta ID链接Web2和Web3的帐户,根据账户持有者的经验与经历形成社区联系,访问不同的DAO和应用程序。
- 将AI的机器学习能力转化为构建Web3应用程序的工具/平台;
比如Fetch.ai(FET),它是一个开发去中心化应用程序的基础设施,利用人工智能的自动化技术,提供了创建和连接智能代理(Agents)的工具,帮助用户执行数字经济中的复杂任务。
- 将Web3分布式存储、交易、计算的能力应用到AI发展所需的生产资料/资源;
比如iExec(RLC),它是基于区块链的去中心化计算资产市场,旨在将资源提供者与资源使用者联系起来,允许任何人租用计算能力、数据集;再如去中心化人工智能服务网络SingularityNET(AGIX),它允许用户将服务发布到网络上供需求方付费(加密资产)集成。
8个早期AI+Web3龙头项目
在AI+Web3中,除了以上8个早期诞生的龙头项目外,一些新“选手”也在奔赴赛道的路上。
针对“数据”这个最明显的结合处,有项目利用了区块链的分布式特性,解决数据垄断问题。
比如,Bagel Network,它创造了“机器学习数据湖”的概念,允许用户以任意规模存储所有结构化和非结构化数据,支持数据科学家和AI工程师以低成本且保护隐私的方式,获得/交换那些经过授权且可验证的数据集。Bagel Network的目的是构建一个去中心化的数据平台,来支持机器学习(ML)模型。
还有不少新项目将AI的能力直接发挥到了Web3最受瞩目的金融应用层面,包括加密资产的交易和支付领域。
比如GT Protocol,它是一个由ChainGPT孵化的加密资产AI执行协议,它允许任何实体或者个人创建一个DeFi智能合约池,利用AI收集和管理用户贡献的流动性,一方面发挥了AI的自动化能力,另一方面也利用了智能合约在链上的透明化特征。
8个新进 AI+Web3 应用
可以预见,2024年,围绕AI的大模型及其应用仍会以层出不穷的态势继续向前发展,而Web3 这个最爱追逐热点的世界也将持续跟进AI这个大热门,两个技术的演进与相互融合,也将为加密资产市场的AI板块增加规模。