东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2 东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。 例如当n = 2: 1^1=1^1 1^1=1^2 1^2=1^1 1^2=1^2 2^1=2^1 2^2=2^2 一共有6个满足要求的式子

区块链毕设网qklbishe.com为您提供问题的解答

东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子

def count_expressions(n):     # 创建一个字典来存储每个幂的结果及其对应的指数对     powers = {}      # 计算所有可能的 a^b 并存储在字典中     for a in range(1, n + 1):         for b in range(1, n + 1):             power = a ** b             if power not in powers:                 powers[power] = []             powers[power].append((a, b))      # 计算所有可能的 c^d 并与 a^b 的结果进行比较     count = 0     for c in range(1, n + 1):         for d in range(1, n + 1):             power = c ** d             if power in powers:                 count += len(powers[power])      return count

19:59

以上就是关于问题东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子的答案

欢迎关注区块链毕设网-
web3一级市场套利打新赚钱空投教程

区块链NFT链游项目方科学家脚本开发培训

从业7年-专注一级市场


微信:btc9767
TELEGRAM :https://t.me/btcok9

具体资料介绍

web3的一级市场千万收益的逻辑


进群点我



qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2 东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。 例如当n = 2: 1^1=1^1 1^1=1^2 1^2=1^1 1^2=1^2 2^1=2^1 2^2=2^2 一共有6个满足要求的式子