东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2 东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。 例如当n = 2: 1^1=1^1 1^1=1^2 1^2=1^1 1^2=1^2 2^1=2^1 2^2=2^2 一共有6个满足要求的式子
区块链毕设网qklbishe.com为您提供问题的解答
东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子
def count_expressions(n): # 创建一个字典来存储每个幂的结果及其对应的指数对 powers = {} # 计算所有可能的 a^b 并存储在字典中 for a in range(1, n + 1): for b in range(1, n + 1): power = a ** b if power not in powers: powers[power] = [] powers[power].append((a, b)) # 计算所有可能的 c^d 并与 a^b 的结果进行比较 count = 0 for c in range(1, n + 1): for d in range(1, n + 1): power = c ** d if power in powers: count += len(powers[power]) return count
19:59
以上就是关于问题东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子的答案
欢迎关注区块链毕设网-
web3一级市场套利打新赚钱空投教程
区块链NFT链游项目方科学家脚本开发培训
从业7年-专注一级市场
微信:btc9767
TELEGRAM :https://t.me/btcok9
具体资料介绍
web3的一级市场千万收益的逻辑
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子
微信:btc9767
TELEGRAM :https://t.me/btcok9
具体资料介绍
web3的一级市场千万收益的逻辑
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2
东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。
例如当n = 2: 1^1=1^1
1^1=1^2
1^2=1^1
1^2=1^2
2^1=2^1
2^2=2^2
一共有6个满足要求的式子
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 东东对幂运算很感兴趣,在学习的过程中东东发现了一些有趣的性质: 9^3 = 27^2, 2^10 = 32^2 东东对这个性质充满了好奇,东东现在给出一个整数n,希望你能帮助他求出满足 a^b = c^d(1 ≤ a,b,c,d ≤ n)的式子有多少个。 例如当n = 2: 1^1=1^1 1^1=1^2 1^2=1^1 1^2=1^2 2^1=2^1 2^2=2^2 一共有6个满足要求的式子