机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。
区块链毕设网qklbishe.com为您提供问题的解答
机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。
要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。
data = datasets.load_iris()
index_arr = np.where(data.target == 2)[0]
new_feat = np.delete(data.data, index_arr, 0)
new_label = np.delete(data.target, index_arr)
#code end here
return new_feat,new_label
def train_and_evaluate():
data_X,data_Y = transform_three2two_cate()
train_x,test_x,train_y,test_y = train_test_split(data_X,data_Y,test_size = 0.2)
#已经划分好训练集和测试集,接下来请实现对数据的训练
#code start here
lr_model = LogisticRegression().fit(train_x, train_y)
y_predict = lr_model.predict(test_x)
#code end here
#注意模型预测的label需要定义为 y_predict,格式为list或numpy.ndarray
print(accuracy_score(y_predict,test_y))
以上就是关于问题机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。的答案
欢迎关注区块链毕设网-
专业区块链毕业设计成品源码,定制。
区块链NFT链游项目方科学家脚本开发培训
从业7年-专注一级市场
微信:btc9767
TELEGRAM :https://t.me/btcok9
具体资料介绍
web3的一级市场千万收益的逻辑
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。
微信:btc9767
TELEGRAM :https://t.me/btcok9
具体资料介绍
web3的一级市场千万收益的逻辑
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。
进群点我
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。
qklbishe.com区块链毕设代做网专注|以太坊fabric-计算机|java|毕业设计|代做平台-javagopython毕设 » 机器学习库 sklearn 自带鸢尾花分类数据集,分为四个特征和三个类别,其中这三个类别在数据集中分别表示为 0, 1 和 2,请实现 transform_three2two_cate 函数的功能,该函数是一个无参函数,要求将数据集中 label 为 2 的数据进行移除,也就是说仅保留 label 为 0 和为 1 的情况,并且对 label 为 0 和 1 的特征数据进行保留,返回值为 numpy.ndarray 格式的训练特征数据和 label 数据,分别为命名为 new_feat 和 new_label。 然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。 要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。